mathcentre

Factorising complete squares

mc-completesquares-2009-1
The technique of factorising a quadratic expression has been explained on leaflet Factorising quadratic expressions. There is a special case of quadratic expression known as a complete square. This leaflet explains what this means and how such expressions are factorised.

What is meant by a complete square ?

A quadratic expression is called a complete square when it can be written in the form ($)^{2}$, that is as a single term, squared.

Consider the following example.

Example

Factorise $x^{2}+10 x+25$.
We write

$$
x^{2}+10 x+25=(x \quad)(x \quad)
$$

and seek two numbers which add to give 10 and multiply to give 25 . The two required numbers are 5 and 5 and so

$$
x^{2}+10 x+25=(x+5)(x+5)
$$

Because both brackets are the same the result can be written as $(x+5)^{2}$. This is a single term, squared, - that is, a complete square.

Example

Factorise $x^{2}-8 x+16$.
Proceeding as before, we write

$$
x^{2}-8 x+16=(x \quad)(x \quad)
$$

and seek two numbers which add to give -8 and multiply to give 16 . The two required numbers are -4 and -4 and so

$$
x^{2}-8 x+16=(x-4)(x-4)
$$

The result can be written as $(x-4)^{2}$, a complete square.

More complicated examples can occur, for example when there is a number in front of the x^{2}. Work through the following example.

Example

Factorise $25 x^{2}-20 x+4$.
Note that $25 x^{2}$ can be written as $(5 x)^{2}$, a squared term. Note also that $4=2^{2}$. In this case, by inspection,

$$
25 x^{2}-20 x+4=(5 x-2)(5 x-2)
$$

The result can be written as $(5 x-2)^{2}$, a complete square.
Do not worry if you have difficulty with this last example. The skill will come with practice.

Exercises

1. Factorise the following.
a) $x^{2}+18 x+81$
b) $x^{2}-4 x+4$
c) $x^{2}-22 x+121$
d) $25 x^{2}+40 x+16$
e) $64 x^{2}+16 x+1$

Answers

a) $(x+9)^{2}$
b) $(x-2)^{2}$
C) $(x-11)^{2}$
d) $(5 x+4)^{2}$
e) $(8 x+1)^{2}$

