

Factorising complete squares

mc-completesquares-2009-1

The technique of factorising a quadratic expression has been explained on leaflet *Factorising quadratic expressions*. There is a special case of quadratic expression known as **a complete square**. This leaflet explains what this means and how such expressions are factorised.

What is meant by a complete square ?

A quadratic expression is called a **complete square** when it can be written in the form $()^2$, that is as a single term, squared.

Consider the following example.

Example

Factorise $x^2 + 10x + 25$.

We write

$$x^2 + 10x + 25 = (x)(x)$$

and seek two numbers which add to give 10 and multiply to give 25. The two required numbers are 5 and 5 and so

$$x^{2} + 10x + 25 = (x+5)(x+5)$$

Because both brackets are the same the result can be written as $(x + 5)^2$. This is a single term, squared, - that is, a **complete square**.

Example

Factorise $x^2 - 8x + 16$.

Proceeding as before, we write

$$x^2 - 8x + 16 = (x)(x)$$

and seek two numbers which add to give -8 and multiply to give 16. The two required numbers are -4 and -4 and so

$$x^2 - 8x + 16 = (x - 4)(x - 4)$$

The result can be written as $(x - 4)^2$, a **complete square**.

More complicated examples can occur, for example when there is a number in front of the x^2 . Work through the following example.

Example

Factorise $25x^2 - 20x + 4$.

Note that $25x^2$ can be written as $(5x)^2$, a squared term. Note also that $4 = 2^2$. In this case, by inspection,

 $25x^2 - 20x + 4 = (5x - 2)(5x - 2)$

The result can be written as $(5x - 2)^2$, a **complete square**.

Do not worry if you have difficulty with this last example. The skill will come with practice.

Exercises

1. Factorise the following.

a) $x^2 + 18x + 81$ b) $x^2 - 4x + 4$ c) $x^2 - 22x + 121$ d) $25x^2 + 40x + 16$ e) $64x^2 + 16x + 1$

Answers

1. a) $(x+9)^2$ b) $(x-2)^2$ c) $(x-11)^2$ d) $(5x+4)^2$ e) $(8x+1)^2$

